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Fully developed periodic flow (with non-zero mean) of a Newtonian fluid in a rigid 
curved tube has been investigated both numerically and experimentally. Results are 
reported for the mean friction factor, the amplitude ratio and phase angle between 
flow rate and pressure drop, the axial velocity profile, and the wall shear stress dis- 
tribution. The numerical results (obtained by a finite difference method) are restricted 
to rather slow flows (mean Dean number a n  < loo), while the experimental results 
(extracted from instantaneous flow rate-pressure drop measurements) extend up 'to 
Dn - 300. A resonant ' interaction between the axial and secondary flows at inter- 
mediate frequencies appears to be a characteristic feature of periodic flow in a curved 
tube. 

1. Introduction 
Steady Poiseuille flow in a rigid curved tube and its effect on associated transport 

processes have been studied extensively since Dean (1927) first predicted the character- 
istic twin-vortex secondary motion (figure la) associated with this flow (see, for 
example, Tarbell & Samuels 1973; Kalb & Seader, 1974; Smith 1976). However, 
time-periodic Poiseuille flow in a rigid curved tube waa first analysed only recently by 
Lyne (1970) who considered the problem of pure sinusoidal flow (with zero mean). 
Lyne construcfed an asymptotic expansion solution of the Navier-Stokes equations, 
valid for high frequencies (a B l), and obtained a striking result. For sufficiently 
high frequencies (a > 12.9), the twin vortex motion which characterizes steady flow, 
transforms to a qualitatively new four-vortex motion (figure 1 b ) .  The inward centri- 
fuging near the centre of the tube was indeed quite unexpected. In  independent 
theoretical studies of this same problem, Zalosh & Nelson (1973) and Chandran et al. 
(1974), employing quite distinct solution techniques, predicted the same new four- 
vortex motion. These theoretical predictions of the new phenomenon were subse- 
quently verified experimentally by Bertelsen (1975). 

In  this paper, we report numerical and experimental results for periodic Poiseuille 
flow (with non-zero mean) in a rigid curved tube. The only previous work on this flow 
was by Smith (1975) who utilized a variety of asymptotic expansions to obtain 
approximate solutions in the high (a 9 1 )  and low (a < 1) frequency regimes. We 
believe that our results for intermediate frequencies reveal a significant new pheno- 
menon - resonance between the axial $ow and the secondary $ow. This means that the 
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(b 1 
FIGURE 1.  Curved tube secondary flows: (a )  Dean-type secondary flow; 

( b )  Lyne-type secondary flow. 

secondary flow has a natural frequency, roughly characterized by the circulation 
time of the secondary flow a t  the time-averaged flow rate, which is excited by the 
oscillating axial flow over a narrow range of frequencies. The character of the resonat- 
ing flow may be quite unusual and not anticipated on the basis of low frequency 
(quasi-steady) or high frequency (relaxed steady) information. It must be emphasized 
that the four-vortex secondary flow discovered by Lyne (1970) is not a manifestation 
of resonance since a pure sinusoidal flow contains no underlying steady motion and 
thus no characteristic circulation time (natural frequency). 

2. Numerical methods 
Solutions of the Navier-Stokes and continuity equations for fully developed laminar 

flow in a rigid curved tube with an imposed axial pressure gradient having the dimen- 
sionless form, K(1+ ksinot), were obtained by a modified ‘alternating direction 
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implicit ’ algorithm. Here k is the amplitude of the oscillating pressure gradient, and 
w the frequency of oscillation. The equations, the grid work and the basic algorithm 
were described by Tarbell & Samuels (1973) in connexion with the steady flow (k = 0) 
version of the problem. A detailed description of the periodic-flow algorithm is avail- 
able elsewhere (Lin 1979). Briefly, in the periodic-flow algorithm, the time period 
[0,2n/w] was divided into N equal increments, and the basic algorithm was employed 
to  integrate all fields over one period (with iteration to convergence of the stream- 
function-vorti+ty equation a t  every time step). During this integration, field values 
from the ‘old’ period (which unfortunately had to  be stored in their entirety) were 
incorporated in explicit calculations whenever ‘new ’ period values were not available. 
The ‘new’ period fields were compared with the ‘old’ period fields, and if adequate 
convergence was not apparent, additional iterations were pursued. Convergence was 
considered adequate when the time-averaged (denoted by a tilde) and peripherally 
averaged (denoted by an overbar) friction factor, y(h,  K ,  k, a), had converged to 
within on a relative basis. 

A uniform ( 1  1 x 11)  polar grid with 121 points covering half of the tube cross-section 
was employed for all periodic-flow calculations. A previous grid refinement study of 
the steady flow numerical solution (Tarbell & Samuels 1973) had shown that the 121 
point grid could predict the peripherally averaged friction factor,f(A, K ) ,  of an infinite 
point grid to within 0.4 yo a t  low Dean numbers (Dn < 12). Grid refinement studies at 
higher Dean numbers were prohibited by excessive computation time. However, for 
Dean numbers up to 315 (the highest value computed) in a tube of aspect ratio 
( A  = R/a,  where a is the tube radius and R is the radius of curvature) 30, the f ( h ,  K )  
values of Tarbell & Samuels’ 121 point grid calculations were within 3.0 % of those 
reported by Collins & Dennis (1975) who carried out more exhaustive grid refinement 
studies of their numerical algorithm. The Tarbell & Samuels’f(h, K )  values were also 
within 2.0 yo of the experimental values reported recently by Mishra & Gupta (1979). 
The periodic-flow algorithm, with k = 0, reproduced the Tarbell & Samuels’ ?(A ,  K )  
values exactly for all of the cases (Dn < 43) attempted. As a further check on the 
accuracy of the periodic-flow algorithm, the aspect ratio ( A )  was set to  1010, and 
attempts were made to reproduce the analytical results of Uchida ( 1  956) for fully 
developed periodic flow in a straight tube. For test cases with k = 0.5 and a! = 6, 9 
and 16, Uchida’s values for the mean friction factor were numerically computed to 
within 0.1 yo, while his values for the amplitude ratio and phase angle were computed 
to within 1-0 yo. 

Because of the preliminary considerations described above, we have confidence in 
the accuracy and consistency of the numerical results to be presented. Unfortunately, 
our ability to obtain results with reasonable computation and storage requirements 
was limited by numerical stability considerations. Our experience with the algorithm 
indicates that  the following rough stability criterion must be satisfied : 

a2N > 2007~~  (1) 

where N is the number of increments in one period. Since the storage limits of the 
IBM 370-3033 (56OK bytes) were approached for N - 20, we were unable to  obtain 
solutions for a c 5. 

The results obtained by the finite difference method are supplemented by values 
of the time and peripherally averaged friction factor in the low-frequency (a + 0) 
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FIGURE 2. Numerical friction-factor data ( A  = 20) .  K = 283:  @, k = 1.0; 6, k = 0 .5 ;  
8, k = 0.25; V, a,eB. K = 600: 0, k = 1.0; 0, k = 0 - 5 ;  0, k = 0.25; 0, am. 

limit. These values are easily obtained because the periodic flow approaches a quasi- 
steady state as a + 0. This limiting low frequency friction factor 

fo(A, K ,  k) E limf(A, K ,  k, a) 

fo(A, K ,  k) = h(6s)2 K ,  k), 

a+O - K 
is calculated as follows: 

where (6,) ( A ,  K ,  k) = inlo‘” - (w,} (A, K (  1 + k sin 7)) dr ,  

and (w,} (A ,  K )  is the steady-flow, area-averaged, axial velocity which depends only 
on the aspect ratio ( A )  and the steady pressure gradient (K) .  The (ws> (A, K )  values of 
Tarbell & Samuels (1 973) and a simple Simpson’s rule technique were employed to 
evaluate the integral in equation (4). 

Numerical results for the friction factor are displayed in figure 2 (additional nu- 
merical results will be discussed in $ 5 ) .  The ordinate is the ratio of the time and 
peripherally averaged friction factor with periodic pressure gradient, f ( K ,  k, a), to 
the peripherally averaged friction factor under steady pressure gradient, f ( K )  ; the 
abscissa is the dimensionless frequency variable, a. The parameter K may be inter- 
preted as the Reynolds number which would be obtained in a straight tube of the same 
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radius, and a t  the same pressure drop as the curved tube. The curves are not complete 
because of the numerical stability problem discussed previously. However, the avail- 
able results suggest that there are maxima in the curves. 

Evidence to support a hypothesis that maxima in the friction factor versus frequency 
curves are a manifestation of resonance between the axial flow and the secondary flow 
comes from two sources. (i) Estimates (derived below) of the characteristic circulation 
time of the secondary motion in curved tube flow under Eteady pressure gradient ( K )  
predict the resonant frequencies (ares) shown in figure 2. Clearly the maxima in the 
curves of friction factor versus frequency must occur at frequencies near the perdieted 
are8. (ii) Analytical solutions of the Navier-Stokes equations for fully developed 
periodic flow in rigid straight tubes (Sex1 1930; Uchida 1956) predict a time-averaged 
friction factor which is independent of frequency and amplitude (see figure 2). This 
is significant because the straight-tube flow has no secondary flow-no natural 
frequency. 

An estimate of ares is developed from the definition of the resonant frequency given 
below: 

( 5 )  
w,,, e 27r-; v, 

Ls 
L, is a characteristic path length and V ,  is a characteristic path velocity for the steady 
secondary flow (see figure 1 a). The following estimates are based on the work of Dravid 
et al. (1971): 

(6% b )  
V 

U 
L, = 4 . 5 ~ ;  V, = -(0.9656&*+ 1-65), 

where Dn is the time-averaged Dean number and v is the kinematic viscosity. 
Equations (5) and (6) lead to the final estimate 

a,,, = 1-18(0-9656bd+ 1.65)t. (7) 

To verify the resonance hypothesis which was suggested by our numerical results 
and the estimate of equation (7)) we performed a series of flow-pressure-drop experi- 
ments which are described in the next section. 

3. Experimental methods 
The major components of the experimental system are shown schematically in 

figure 3. The overall system is composed of four sections and each is described below. 
Section I provides a sinusoidally varying flow rate by superimposing a sinusoidal 

flow oscillation on a steady flow. The steady flow is generated by a gear pump (ECO 
Gearchem Model G4-ACV-KKU) driven by a 0.5 hp phase motor equipped with a 
speed controller. The sinusoidal flow pulsations are provided by a piston pump 
(Harvard Apparatus Model 1423) having adjustable stroke volume (15-100 ml), 
stroke rate (5-100 min-1) and phase ratio. The gear pump speed controller and the 
three piston pump controls allow adjustment of the sinusoidal pressure drop para- 
meters ( K ,  k, a). 

Section I1 is a flowmeter which monitors both the instantaneous and time-averaged 
flow rates. It consists of a straight three-metre length of heavy wall Pyrex tube 
(1.27 cm inside diameter) fitted with a pair of pressure taps (0-5 cm inside diameter 
holes separated by 10 cm) at  the far end. The pressure taps are connected to a 
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FIGURE 3. Schematic diagram of the experimental apparatus. (a) Constant head tank. ( b )  Gear 
pump. ( c )  Speed controller. ( d )  Rotameter. (e) Pulsatile piston pump. ( f )  Straight tube. (9) 
Helical coil. (h) Differential pressure transducer. ( i )  Two-way stockcock valve. (j) Carrier 
demodulator. (k) Low-pass filter. (1) Two-channel recorder. (m) Digital voltmeter. 

differential pressure transducer (section IV) via short lengths of tygon tubing. Based 
on the work of Atabek & Chang (1961), the three-metre flow development length 
insures fully developed straight-tube periodic flow for all of our experiments. By 
measuring the instantaneous pressure drop for fully developed flow in the straight 
tube, the instantaneous flow rate may be calculated from the theory of fully developed 
periodic flow in straight tubes (Sex1 1930; Uchida 1956). 

The operating equations of the flowmeter are quite simple as the straight tube is 
a linear system under fully developed flow conditions. If the measured pressure 
gradient has the following form: 

APIAL = K( I + k cos ut) (8 )  

where P is the pressure and L the length of tube. Then the flow rate'is given by 

Q = Kq(l + kqc0s (ot - 6)) 

where Kq is the mean flow rate given by 

Kra4 
8P 

Kq = - Hagen-Poiseuille Law, 

and kq is the amplitude of the flow rate, 

kq = uk. 

(9) 

(10) 

The parameters u and 6 are functions of the frequency parameter a ( = a ( u / v ) ~ ) .  The 
functions a(a) and &(a) may be extracted from Uchida (1956). Thus, by measuring 
K ,  k and w ,  it  is possible to calculate the instantaneous flow rate (Kq,  kq, 6). The flow- 
meter was calibrated in steady flow by a time weighing method and the Hagen- 
Poiseuille law was obeyed to within 0.3 yo up to a Reynolds number of 1100. 
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Dean number, Dn 
FIGURE 4. Experimental friction-factor data (steady flow, h = 15.4). 

0, Experimental data; -, Mishra & Gupta (1979); - - -, Tarbell & Samuels (1973). 

Section I11 is the test section which contains a helical coil (curved tube) made from 
heavy wall Pyrex tube (1-15 em inside diameter). The aspect ratio of the coil ( A )  is 
15.4 and the pitch is about 0.02. A pair of pressure taps (0.5 em inside diameter holes 
separated by 19.3 em) is located 194 cm downstream from the coil entrance. Based 
on the work of Yao & Berger (1975) and Patel, McFeeley & Jolls (1975)) this entrance 
length ensures fully developed periodic flow in the curved tube section. Glycerol/water 
mixtures (2.5-4.0 cSt) provide a Newtonian test fluid. 

Section IV is the data acquisition section. A differential pressure transducer 
(Validyne DP103, f 0.02 psid, natural frequency - 50 Hz) sends ax. signals from 
the flowmeter and test section to a carrier demodulator (Validyne CD15) which 
provides a d.c. output for filtering and recording. A. first-order low-pass filter (break 
frequency N 0.01 Hz) is employed to time average the periodic output from the 
demodulator. A Gould/Brush 280 recorder (flat frequency response up to 35 Hz) 
displays both the instantaneous and time-averaged outputs. 

4. Experimental results 
A series of steady flow experiments (covering the range of time-averaged flows to 

be considered in subsequent periodic-flow experiments) was conducted initially. 
Results, in the form of the ratio of curved tube to straight tube friction factors (at 
the same Reynolds number) as a function of the curved tube Dean number (Dn), are 
compared to the theoretical results of Tarbell & Samuels (1973) and the experimental 
results of Mishra & Gupta (1979) in figure 4. Our experimental results are within 
0.5 yo of Mishra & Gupta’s and this leads us to believe that the experimental system 
was adequately calibrated. 

All of the periodic-flow experiments were characterized by a nearly pure sinusoidal 
flow rate and pressure gradient. Fourier analysis of several strip chart recordings 
indicated that the amplitude of the first harmonic was within 3.0% of the value 
obtained by measuring the mean and the maximumjminimum peak height. The 
maxima and minima of the recordings were displaced nearly the same distance above 
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FIQURE 5. Friction factor data. Open symbols are experimental data (K = 779, A = 15.4); 
shaded symbols are numerical data (K = 600, A = 20). a, k = 1.0; A, k = 0-8 ;  0, k = 0.5. 
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Mean axial pressure-gradient parameter, K 

FIQURE 6. Resonant -frequency data. Solid lines for experimental data ; broken line for theoretical 
estimate (equation (7) ) .  0, k = 1.0; A, k = 0.8; 0, k = 0.5. 
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FIGURE 7. Resonant friction-factor data. 0, k = 1.0; A, k = 0.8; 0, k = 0.6. 

Frequency parameter, 01 

8. Amplitude-ratio data. Open points are experimental data ( K  
points are numerical data ( K  = 600, h = 20). 0, k = 1.0; V ,  k = 

= 779, h = 15.4); 
0.8; 0, k = 0.5. 
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FIGURE 9. Experimental amplitude-ratio data (K = 2177, h = 15.4). 
0, k = 1.0; A, k = 0 .8 ;  0, k = 0.5. 

and below the mean. Thus, even though the curved tube is a non-linear system, we 
have observed that a sinusoidal pressure-gradient input appears as a sinusoidal flow- 
rate output. This would appear to  be linear behaviour. However, as we shall see, the 
mean and phase lag of the output, as well as the output/input amplitude ratio, depend 
strongly on the amplitude and mean of the input. This clearly is nonlinear behaviour. 

Periodic flow experimental results were obtained a t  four mean pressure gradients 
( K  = 779, 1066, 1623, 2177), three pressure-gradient amplitudes (k = 0.5, 0.8, 1.0), 
and several frequencies in the range 2.5 < a < 5.5.  The mean friction factor, and the 
amplitude ratio and phase angle between flow rate and pressure drop were extracted 
from measurements of the instantaneous flow rate and pressure drop. Experiments 
were repeated a t  K = 779, k: = 0.5, and K = 1623, k = 1.0 for 2.5 < a < 5-5 .  The mean 
friction factor, which was the most frequency-sensitive variable measured, was repro- 
ducible to within 4.0 %, while the amplitude ratio and phase angle were reproducible 
to within 2.0 yo. Representative data are presented in figures 5- 11 ,  while a complete 
tabulation of all data is available elsewhere (Lin 1979). 

Typical friction factor results are displayed in figure 5 .  The striking feature of these 
results is the presence of maxima a t  intermediate frequencies for each k. These 
maxima strongly support our hypothesis of resonant interaction between the axial 
and secondary flows. This may be seen more clearly in figure 6 which compares our 
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FIUTJRE 10. Phase-lag data. Open points ma experimental data (K = 779, h = 15.4); shaded 
points are numerical data ( K  = 283, h = 20). 0, k = 1.0; A ,  k = 0.8; 0, k = 0.5. 

estimate of the resonant frequency (ares) based on the steady secondary flow (equation 
(7)) with the experimentally observed resonant frequencies. If one assumes that the 
steady flow estimate is indicative of the low amplitude (k -+ 0) behaviour, then the 
trend is clear. The resonant frequency is shifted to lower values as the driving amplitude 
is increased. The resonant friction factor values are also very sensitive to the amplitude 
(figure 7). 

Figures 8 and 9 show the typical flow/pressure-gradient amplitude ratio (u = kJk) 
dependence on frequency for the various input conditions (k, K ) .  The amplitude ratio 
is always higher for the curved tube than for the straight tube. The influence of k is 
great at intermediate frequencies (near ares) but is diminished at higher frequencies, 
in accord with numerical results (see figure 8). As in the case of the friction factor, the 
influence of K is rather weak. 

The phase lag of the flow rate relative to the pressure gradient (6) is displayed in 
figures 10 and 11.  The experimental data indicates a maximum in the a dependence 
of 6 for all (k, K ) .  The limited numerical data which is included in figure 10 reveals a 
similar maximum which is followed by a minimum at slightly higher frequency. We 
may expect this minimum/maximum behaviour of the phase lag dependence on 
frequency to be a characteristic feature of periodic flow in a curved tube. Although 
not shown in figure 10, the numerical data further indicate that the phase lag approaches 
a high frequency asymptote (a -+ CO) of 80.4" which is independent of K and k. This 
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FIGURE 11. Experimental phase-lag data (K = 2177, h = 15.4). 

0, k = 1.0; A ,  k = 0.8; 0, k = 0.5. 

observation is based on limited results for A = 20; K = 133, 283; k = 0.25, 0.50, 
1.0; a < 46. It should be noted that the asymptotic (a -+ co) phase lag for the straight 
tube is always 90". Finally, unlike the friction factor and the amplitude ratio, the phase 
lag displays marked dependence on K .  

5. Numerical results 
Flow-pressure drop data of the type presented in the last section provides a dynamic 

characterization of the curved tube, but is unable to shed direct light on the internal 
attributes of the flow field. However, the flow pressure drop data confirms our hypo- 
thesis of resonant interaction between the axial and secondary flows a t  intermediate 
frequencies. The friction-factor results suggest abnormally high wall shear stresws 
for resonant flows and this may have its implications for atherosclerosis - a disease 
whose pathogenesis is thought to be linked with local fluid mechanics and radial 
mass-transport ratea [see the representative theories of Fry (1969) and Caro, Fitz- 
Gerald & Schroter (1971)l. With this in mind, we present details of the wall shear stress 
distribution and axial velocity profile (figures 12-14) for the case K = 600, k = 1.0, 
and tl. = 7.0. This particular case provided the highest mean friotion factor enhance- 
ment obtained by numerical methods (see figure 2). 

The axial wall shear stress (7+elprl = - a ~ / a y l ~ - ~ )  and the secondary wall shear 
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FIGURE 12. Magnitude of the wall shear stress ( K  = 600, h = 20, k = 1.0, a = 7.0). Solid lines 
for curved tube; dashed lines for straight tube; values indicated on inside of ordinate are for 
steady flow. 

stress ( ~ + + l ~ - ~  = --i3~/ay[~J were computed from the discrete velocity fields via a 
three point Lagrange coefficient approximation. The magnitude of the wall shear 
stress ( ! T I )  as a function of time for four peripheral locations (Q, = 0" - outside wall, 
Q, = 180" - inside wall) is shown in figure 12 together with similar results for periodic 
flow in a straight tube (from Uchida 1956) and steady flow in a curved tube (from 
Mori & Nakayama 1965). 

The variation in wall shear stress is perhaps the most striking feature of these results. 
Consider the ratio of maximum to minimum wall shear stress taking into account both 
temporal and spatial variations. The following values are obtained: 

1 ~ 1 ~ ~ ~ / 1 ~ 1 ~ ~ ~  = 1.00; 

1 ~ 1 ~ ~ ~ / 1 ~ 1 ~ ~ ~  = 1.75; 

1 ~ l ~ ~ ~ / l ~ l ~ ~ ~  = 3.85; 
1 ~ ( , , , / 1 ~ 1 ~ ~ ~  = 7.40. 

Apparently the outside wall experiences unusually high shear stress and the inside 
wall experiences unusually low shear stress during periodic flow in a curved tube. 
This trend may be amplified a t  lower frequencies near the resonant frequency. 

The periodic axial velocity profile (horizontal plane) for the curved and straight 

Steady flow, straight tube, 
Periodic flow, straight tube, 
Steady flow, curved tube, 
Periodic flow, curved tube, 
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F I Q ~ E  13. Axial velocity profile in the horizontal plane 
(K = 600, h = 20, k = 1.0; a = 7.0). 

tubes are displayed in figure 13. The reduced flow and skewed velocity profile in the 
curved tube are very apparent and qualitatively similar to steady flow curved tube 
beliaviour. Figure 14 shows the pulsatile component of the axial velocity profile 
obtained by subtracting the mean values from those in figure 13. Unlike the straight- 
tube profile, the curved-tube profile is quite asymmetric about the centre-line. It 
should be noted that for pure pulsatile flow (zero mean) in a curved tube, the axial 
velocity profile is quite symmetric (Zalosh & Nelson 1973), again in contrast with the 
behaviour found here. All of the numerical solutions displayed instantaneous secon- 
dary flows of the twin vortex Dean type (figure 1 a). No four-vortex Lyne type (figure 
1 b)  secondary flows were observed. However, resonant frequencies were not reached 
by numerical methods, and thus the nature of the resonant secondary flow remains 
unknown. 

6. Concluding remarks 
The interaction between the axial and secondary fluid motion during periodic flow 

in a curved tube leads to flow behaviour which is markedly frequency dependent a t  
intermediate frequencies. We have termed this phenomenon ‘resonance ’ because the 
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FIGURE 14. Pulsstile component of the axial velocity in the horizontal plme ( K  = 600, A = 20, 
k = 1.0, a = 7.0). - , curved tube; - - - -, straight tube. 

sensitive frequency range appears to be centred about the natural circulation frequency 
of the secondary motion. The time and peripherally averaged axial shear stress at the 
wall (or equivalently, the friction factor) is relatively much higher in the narrow 
resonance region than a t  high or low frequencies. One may expect similar enhance- 
ment of radial heat and mass transfer rates a t  frequencies near the resonant frequency. 
One should also expect resonance phenomena to occur more generally in 'periodic 
Poiseuille flows with secondary motion '. 

Resonance may play a role in the pathogenesis of atherosclerosis. This seems 
plausible because of the pattern of the disease. It occurs in the large arteries (where 
the blood flow is highly pulsatile) and preferentially in regions of curvature and 
branching (Nerem & Cornhill 1978). Both curvature and branching induce secondary 
flows which can interact with the axial flow in a resonant fauhion such as we have 
reported here. The resonance may affect the wall shear stresses and mass transport 
rates - quantities generally thought to be important in the disease mechanism (Fry 
1969; Caro et al. 1971). 

Partialsupport forthiswork by NSFGrant ENG 77-06083isgratefullyacknowledged. 
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